Glioma pathogenesis-related protein 1 exerts tumor suppressor activities through proapoptotic reactive oxygen species-c-Jun-NH2 kinase signaling.
نویسندگان
چکیده
Glioma pathogenesis-related protein 1 (GLIPR1), a novel p53 target gene, is down-regulated by methylation in prostate cancer and has p53-dependent and -independent proapoptotic activities in tumor cells. These properties suggest an important tumor suppressor role for GLIPR1, yet direct genetic evidence of a tumor suppressor function for GLIPR1 is lacking and the molecular mechanism(s), through which GLIPR1 exerts its tumor suppressor functions, has not been shown. Here, we report that the expression of GLIPR1 is significantly reduced in human prostate tumor tissues compared with adjacent normal prostate tissues and in multiple human cancer cell lines. Overexpression of GLIPR1 in cancer cells leads to suppression of colony growth and induction of apoptosis. Mice with an inactivated Glipr1 gene had significantly shorter tumor-free survival times than either Glipr1(+/+) or Glipr1(+/-) mice in both p53(+/+) and p53(+/-) genetic backgrounds, owing to their development of a unique array of malignant tumors. Mechanistic analysis indicated that GLIPR1 up-regulation increases the production of reactive oxygen species (ROS) leading to apoptosis through activation of the c-Jun-NH(2) kinase (JNK) signaling cascade. Thus, our results identify GLIPR1 as a proapoptotic tumor suppressor acting through the ROS-JNK pathway and support the therapeutic potential for this protein.
منابع مشابه
Glioma Pathogenesis-Related Protein 1: Tumor-Suppressor Activities and Therapeutic Potential
After glioma pathogenesis-related protein 1 (GLIPR1/Glipr1) was identified, the expression of GLIPR1 was shown to be down-regulated in human prostate cancer, owing in part to methylation in the regulatory region of this gene in prostate cancer cells. Additional studies showed that GLIPR1/Glipr1 expression is induced by DNA-damaging agents independent of p53. Functional analysis of GLIPR1 using ...
متن کاملc-Jun NH2-Terminal Kinase Activation Contributes to Hypoxia-Inducible Factor 1 –Dependent P-Glycoprotein Expression in Hypoxia
We previously have shown that hypoxia increases the expression of P-glycoprotein, which in turn increases tumor cell capacity to actively extrude chemotherapeutic agents and may contribute to tumor drug resistance. This event is mediated through the hypoxia-inducible factor (HIF-1). Here, we investigated the role of the stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) in the sign...
متن کاملc-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1alpha-dependent P-glycoprotein expression in hypoxia.
We previously have shown that hypoxia increases the expression of P-glycoprotein, which in turn increases tumor cell capacity to actively extrude chemotherapeutic agents and may contribute to tumor drug resistance. This event is mediated through the hypoxia-inducible factor (HIF-1). Here, we investigated the role of the stress-activated protein kinase c-Jun NH(2)-terminal kinase (JNK) in the si...
متن کاملIranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat
Objective(s): Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measur...
متن کاملGinsenoside-Rh2-induced mitochondrial depolarization and apoptosis are associated with reactive oxygen species- and Ca2+-mediated c-Jun NH2-terminal kinase 1 activation in HeLa cells.
We show here that Ca(2+) and reactive oxygen species (ROS) are involved in the up-regulation of c-Jun NH(2)-terminal kinase 1 (JNK1) activity during apoptosis induced by ginsenoside Rh2 (G-Rh2) in HeLa, MCF10A-ras, and MCF7 cells. Addition of antioxidants such as N-acetyl-l-cysteine or catalase attenuates G-Rh2-induced ROS generation, JNK1 activation, and apoptosis. The overexpression of catala...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 68 2 شماره
صفحات -
تاریخ انتشار 2008